A Novel Approach to Estranes by an Intramolecular Double Michael Reaction

Masataka Ihara,^a Takako Takahashi,^a Noriko Shimizu,^a Yohhei Ishida,^a Izumi Sudow,^a Keiichiro Fukumoto,*a **and Tetsuji Kametanib**

^a*Pharmaceutical Institute, Tohoku University, Aoba yama, Sendai 980, Japan*

b *Institute of Medicinal Chemistry, Hoshi University, Ebara 2-4-4 1, Shinagawa-ku, Tokyo 142, Japan*

A new construction of the estrane ring system was achieved by intramolecular double Michael reaction of the α , β -unsaturated enone ester **(5)**.

The development of a new method for assembly of the steroidal skeleton is a challenging problem owing to its medicinal importance. Recently we reported a synthesis of androgens *via* A/B-ring formation using an intramolecular Diels-Alder reaction **.1** Further investigation of the synthesis of the steroidal **A/B** ring system using an intramolecular double Michael reaction2 led us to develop a new approach to estranes.

The optically active indanone $(1)^3$ was converted into the ketone **(2)** in four steps: condensation with l,l-dimethoxy-4 bromobutane in the presence of sodium methylsulphinylmethide (53% yield), catalytic hydrogenation using 10% Pd-C, Collins oxidation of the epimeric alcohols, and epimerisation with NaOMe (64% overall yield for three steps). Wittig reaction (98% yield) followed by hydroboration-oxidation gave a mixture of two epimeric primary alcohols (95% yield), which was oxidised by Swern oxidation. After epimerisation with NaOMe, the aldehyde **(3)** was subjected to Wadsworth-Emmons reaction to afford the (E) -unsaturated ester (4) (86%) overall yield for three steps) as the sole product. The ester **(4)** having the correct stereochemistry at the five chiral centres on the c/p-ring system was transformed into the enone (5) in three steps: deblocking with AcOH-H₂O $(4:1)$ at 60 °C (98%) yield), Grignard reaction, and oxidation with pyridinium dichromate in CH_2Cl_2 (81% overall yield for two steps).

The vinyl ketone group of *(5)* was too reactive with lithium di-isopropylamide (LDA) or lithium hexamethyldisilazide to produce any desired product. However, heating *(5)* in the

Scheme 1. Reagents: i, $(MeO)_2CH[CH_2]_3Br$, NaCH₂SOMe; ii, H₂, 10% Pd-C; iii, CrO₃.2 pyridine; iv, NaOMe; v, Ph₃PMeBr, KH, EtC(Me)₂OH; vi, BH₃·Me₂S then H₂O₂, NaOH; vii, dimethyl sulphoxide (DMSO), (COCl)₂, Et₃N; viii, NaOMe; ix, (MeO)₂-POCH₂CO₂Me, NaH; x, AcOH, H₂O; xi, CH₂=CHMgBr; xii, pyridinium dichromate; xiii, Me₃SiCl, Et₃N, ZnCl₂, heat then 10% $HClO₄$, tetrahydrofuran; xiv, $(Bu^j)₂AIH$; xv, DMSO, $(COCl)₂$, Et₃N; xvi , $(Ph_3P)_3RhCl$, heat.

presence of Me₃SiCl, Et₃N, and $ZnCl₂⁴$ in toluene in a sealed tube at 160° C for 12 h followed by acidic treatment gave three tetracyclic compounds (6) , (7) , and (8) $(57\%$ yield) in a ratio of ca. 1:2:1. The compound (6), m.p. 145–146 °C, $[\alpha]_D^2$ +13.6° (c 1.0, CHCl₃), c.d.[θ] -657° (297 nm) (MeOH), was easily purified by silica gel column chromatography, but (7) and (8) were inseparable. They were converted into three estran-4-ones (9) , (10) , and (11) in three steps: reduction with (Buⁱ)₂AlH (86% yield), Swern oxidation (98% yield), and decarbonylation using $(Ph_3P)_3RhCl^5$ in refluxing xylene (59— 79% yield). Separation of (10) and (11) was achieved by h.p.l.c. The major product, m.p. 76-79 °C, showing a large negative Cotton effect⁶, c.d. $[\theta]$ -4900° (292 nm) (MeOH),

Scheme 2. Reagents: i, m-chloroperbenzoic acid; ii, $BF_3·Et_2O$; iii, $(CH_3)_2C=CH_2$, $BF_3·Et_2O$, H_3PO_4 .

was identical with the 5α , 10 β -estran-4-one (10), m.p. 76-79 °C, c.d. [θ] -4930° (292 nm) (MeOH), which was prepared from $(+)$ -17 β -hydroxyester-4-ene (12)⁷ in three steps: epoxidation with m -chloroperbenzoic acid, rearrangement with BF_3 Et_2O , and protection with isobutene in the presence of $BF_3 \cdot Et_2O$ and H_3PO_4 . The compound (9) was readily epimerised with NaOMe to (10), while the ketone (11) was intact under the basic conditions. Therefore the structure of (9), m.p. 104—107 °C, c.d. [θ] -478° (300 nm) (MeOH), was determined as an 5β , 10 β -estran-4-one. The 5α , 10 α stereochemistry of (11) , m.p. 60–62 °C, was deduced by the negative Cotton effect, c.d. $[\theta]$ -2092° (292 nm) (MeOH).

The above annulation of the α , β -unsaturated ester (5) was carefully studied by t.l.c. during the reaction and it was observed that (5) was initially converted into a tetracyclic ketone, which was then gradually transformed into a mixture of silyl enol ethers. A similar result was observed in our synthesis of pentalenic acid.⁸ Therefore we predicted that the cyclisation would not be an intramolecular Diels-Alder reaction of the siloxydiene but a tandem conjugate addition. The configuration at the C-1 position of the compounds (6) — (8) were tentatively assigned from the assumption that the stereochemistry of the (E) - α , β -unsaturated ester was retained during the reaction.

Thus a new route to the estran-4-ones, useful intermediates in the synthesis of medicinally important steroid hormones,⁹ was achieved.

Received, 30th March 1987; Com. 407

References

- 1 M. Ihara, I. Sudow, K. Fukumoto, and T. Kametani, J. Org. Chem., 1985, 50, 144; J. Chem. Soc., Perkin Trans. 1, 1986, 117.
- 2 M. Ihara, M. Toyota, K. Fukumoto, and T. Kametani, Tetrahedron Lett., 1984, 25, 2167; M. Ihara, M. Tsuruta, K. Fukumoto, and T. Kametani, J. Chem. Soc., Chem. Commun., 1985, 1159; M. Ihara, M. Toyota, M. Abe, Y. Ishida, K. Fukumoto, and T. Kametani, J. Chem. Soc., Perkin Trans. 1, 1986, 1543; M. Ihara and K. Fukumoto, J. Synth. Org. Chem. Jpn., 1986, 44, 96 and references cited therein.
- 3 R. A. Micheli, Z. G. Hajos, N. Cohen, D. R. Parrish, L. A. Portland, W. Sciamanna, M. A. Scott, and P. A. Wehri, J. Org. Chem., 1975, 40, 675.
- 4 S. Danishefsky and T. Kitahara, J. Am. Chem. Soc., 1974, 96, 7807; R. L. Snowden, Tetrahedron, 1986, 42, 3277; M. Ihara, T. Kirihara, A. Kawaguchi, K. Fukumoto, and T. Kametani, Tetrahedron Lett., 1984, 25, 4541.
- 5 M. C. Baird, J. T. Mague, J. A. Osborn, and G. Wilkinson, J. Chem. Soc. A, 1967, 1347; K. Ohno and J. Tsuji, J. Am. Chem. Soc., 1968, 90, 99.
- 6 M. P. Hartshorn, D. N. Kirk, and W. Klyne, Tetrahedron Lett., 1965, 89.
- 7 M. S. de Winter, C. M. Siegmann, and S. A. Szpilfogel, Chem. Ind., 1959, 905.
- 8 M. Ihara, M. Katogi, K. Fukumoto, and T. Kametani, J. Chem. Soc., Chem. Commun., 1987, 721.
- 9 D. P. Strike, D. Herbst, and H. Smith, J. Med. Chem., 1967, 10, 446.